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TOWARD A THEORY OF TRANSPORT IN HETEROGENEOUS MEDIA 

Yu. A. Buevich UDC 536.242:532.546 

A unified equation is obtained for description of nonsteady state heat and 
mass transport in two-phase heterogeneous media in the low- and high-frequen- 
cy approximations. Heating of a granular bed by a solid wall is considered 
as an example. 

i. The basis of the traditional method of describing heat and mass transport processes 
in disperse and other heterogeneous materials is a system of equations for moderate tempera- 
tures or impurity concentrations in the individual phases, which consider interphase heat 
and mass exchange. Such equations are usually derived by the use of semiempirical relation- 
ships [1-3], although their general structure has been confirmed by results of a stricter 
analysis [4, 5]. We will write this system for heat transport in situations where convec- 
tive and dispersive transport is significant for only one (continuous) phase: (o ) edge, ~ + uv TI=L.ATI - -~ (T1- -T~) ,  

(1) 
(1 -- g) d2c2 ~ = ~ (7" 1 Tz). 
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If the heterogeneous medium under consideration is macroscopically homogeneous, then 
~, %,, and $ are independent of coordinate; however, the usual assumption of time-indepen- 
dence of %, and ~ is a very strong assumption, which is approximately valid only in the 
limiting case of almost steady-state processes. Under nonsteady conditions this assumption 
is definitely not satisfied [6], and the question of the character of the approximation 
achieved by system (i) arises relative to its use for significantly nonsteady-state process. 

Equations analogous to Eq. (i) in form and physical meaning have been used in many 
other situations involving simultaneous transport through coexisting contacting phases or 
components of a complex system of matter of some other physical nature (electrons, ions, 
etc.). We will note specially filtration transport of gas through a droplet liquid in fis- 
sured-porous and other materials with a dual porosity [7, 8], as well as filtration of a 
gas complicated by sorption effects [9, i0]. Such processes are also described by equations 
the structure of which is analogous to Eq. (i). 

Even if we agree with the assumptions made in formulating Eq. (i), this system proves 
inconvenient for practical use. This fact has stimulated construction of models in the 
framework of which the heterogeneous medium is considered as some sort of continuum ("pseudo- 
liquid") with unique properties with formulation of a corresponding unique equation for the 
mean temperature (concentration) of such a continuum or one of the phases of the medium. 
An example of this approach is the introduction of a hyperbolic thermal conductivity (diffu- 
sion) equation in [11-13], which is justified to some degree by considerations following 
from the thermodynamics of irreversible processes [14-16]. 

A direct simplification of system (i) is also possible, within the limits of its physi- 
cal accuracy, by using a representation of the quantity T 2 from the second equation as a 
result of action of a defined operator on T I with subsequent use of an operator expansion 
in powers of (8/8t) n. Substitution of the approximate expression obtained for T 2 in the 
first equation leads to a unique, so-called equivalent, equation for Tl, of the elliptic 
type. For system (I) this equation has the form 

OZT1 
de OT~ + ~ d l c ~ u v T  l = 2~,AT~ ~ n z _  , 

Ot Ot 2 ( 2 ) 

dc = ~dlcl -Jr- (1 - -  ~) d2c~, m ~- (1 - -  8)"(d2c.,.)2/~. 

An analogous equivalent equation for filtration processes was obtained in [8], while 
its generalization to situations where transport through both phases of the heterogeneous 
medium is significant was performed in [18]. 

Strict derivation of a unique equation can in principle be accomplished by ensemble 
averaging of local convective thermal conductivity (diffusion) equations in both phases and 
use of the fundamental concept of the self-consistive field theory, which makes possible 
consideration of Collective effects present in the system, reflecting interaction of parti- 
cles of the dispersed phase [5]. As a result, in the approximation under consideration, 
corresponding to processes close to steady state, one again obtains an equation which usual- 
ly is of the elliptical type [6]. Although this method allows us to successfully describe 
the effect on the transport process of internal sources or drains, the kinetics of transport 
through the interphase boundary, and the effect of conductivity through the dispersed phase 
(see, for example, [19, 20]), it is quite laborious and cumbersome, and the results which it 
produces are usually poorly expressed. 

Thus, the various approaches and model considerations lead to significantly different 
equations for description of heat and mass transport. Solutions of some of these equations 
have been evaluated and compared among themselves and with available experimental data in 
[21-23]. From the results of these evaluations there follows the general conclusion that 
the lack of clear physical concepts of the way the process occurs, as well as detailed ex- 
perimental data, at present complicates choice of the most adequate model for engineering 
calculations. Under such conditions it becomes desirable to perform a direct analysis of 
transport processes at the level of individual elements of the dispersed phase on the basis 
of strict methods of the type developed in [4-6, 19, 20] without introduction of any poorly 
proved a priori assumptions. However, such methods should first be applied to special 
cases where it is possible to effectively use some simplifying assumptions, thus obtaining 
relatively simple and easily represented results. 
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2. In the general case the dispersion of the coefficients %, and $ in Eq. (i) is caused 
by two basic relaxation processes: relaxation of the mean heat or mass flux to its steady- 
state value, corresponding to the given instantaneous value of the temperature or concentra- 
tion gradient, and relaxation of the temperature (concentration) of the dispersed phase to 
the value of this quantity in the continuous phase, caused by the interphase heat (mass) 
transport mechanism. Both these processes are controlled by relaxation of the temperature 
or concentration fields both within the particles and in the spaces between them, while the 
inhomogeneity of the temperature or concentration distribution of the continuous phase along 
the surfaces of individual particles of the dispersed phase also plays a role. Significant 
simplification can be achieved if for some reasons the characteristic time of field relaxa- 
tion in the continuous phase is much less than the corresponding time for particles, and it 
also becomes possible to neglect inhomogeneity of those fields over linear lengths of the or- 
der of the particle size. In this case it is possible to take the temperature (concentra- 
tion) on the surface of each particle as independent of coordinate and coinciding with the 
mean for the continuous phase at the point of particle location, assuming the thermal diffu- 
sivity coefficient x, = l,/dlc I (diffusion coefficient D I) in Eq. (i) equal to its steady- 
state value, which is assumed known. Then in general there is no need to solve the complex 
boundary problem for heat or mass transport in the vicinity of a selected (test) particle 
[5, 6, 19, 20], and the problem reduces in fact to analysis of the dynamics of temperature 
or concentration change only within the particle. Analyses based on similar assumptions 
have been used previously several times (see, for example, [24, 25]). 

The temperature relaxation times within particles and the intervals between particles 
are of the order of the quantities At =a2/x and At' = s215 respectively. Therefore, the 
above requirement on these times reduces to the inequality x' >> (s215 For granular par- 
ticle layers having no intense anisotropy of form, the linear scale s of the space between 
particles is at least 101/2-10 times less than the particle size a. Thus, the inequality 
takes on the form ~' >> (0.01 - 0.01)~ and for real materials proves valid for the majority 
of cases. The same situation occurs in mineral extraction thermophysics, since the charac- 
teristic size of fissures s is much greater than the linear scale a of the monoliths or 
porous blocks separating them. However, for filtration in capillary-porous bodies with top- 
ologically similar phases usually s ~ a, i.e., the approximation under consideration is 
invalid. 

The conditions for satisfaction of the inequality At' << At are eased even more when we 
deal with diffusion of an impurity in a filtration flow, since the diffusion coefficient D' 
in the filtering liquid or gas exceeds by an order of magnitude or more the diffusion coef- 
ficient D in the porous particles being flowed over. An analogous inequality is almost al- 
ways satisfied for filtration in fissured-porous media, when At'a ~ s where v is the veloc- 
ity of sound in the fluid and At ~ a2/z, where x is the piezoconductivity coefficient in the 
porous blocks, while it is always true that s << a, v >> • 

Temperature or concentration inhomogeneity on the surface of an individual particle can 
be neglected approximately, if the inequality a << L is satisfied, where L is the linear scale 
of the mean temperature or concentration fields. Since this same inequality is a necessary 
condition for applicability in principle of continuum methods for description of transport 
processes in heterogeneous media [in particular, the applicability of equations of the type 
of Eq. (i) or (2)], below we will consider it to be satisfied. 

3. We will model the real particles of a granular layer by spheres of radius a, assum- 
ing that on the sphere surface the temperature T l = To cos ~t is satisfied. Within the 
sphere the temperature, satisfying the condition of periodicity necessary in the case under 
consideration, is defined by the expression [26]: 

Y = A (a/r) cos (~t + ~), ~ ' = V ~ / 2 •  

sh[(1 q- i) Co'r] (3) A : = ( c h 2 ~ 1 7 6 1 7 6  1/2, 
ch 2~'a - -  cos 2~'a ~ = arg sh [(1 +i) ~'al 

[the term in Eq. (3) produced by the initial temperature distribution need not be considered 
in connection with the replacement of the initial condition by the periodicity condition]. 

We will consider Eq. (3) in the low-frequency approximation where the inequality 6 = 
m'a << 1 is satisfied. In this case 
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A =  r [ 1 1 o)"*(a~--r~)q-O(68)] 
a 45 

1 
~p = - -  - -  o ' ~  ( a  ~ - -  r D  + 0 (66) ,  

3 

so that for the temperature we have 

T = T o  1 180• 2 j c ~  o r - -  6• q-O(fi6). 

Hence  i t  i s  s i m p l e  t o  c a l c u l a t e  t h e  t h e r m a l  f l u x  t o  t h e  p a r t i c l e  

(4) 

q= 4aaZs orOT I~=~ = 4aa-----~3d2czT~ ( - - o  sin r o t + \  --mZaZ15• c0s o t ) +  0 ( 6 %  

The expressions presented above for T and q for an w-dependent value of T O can be con- 
sidered as Fourier transforms of the temperature within the particle and the heat flux to 
the particle, dependent on time in an arbitrary manner. Applying a reverse Fourier trans- 
form to the latter expression, for the flux we obtain 

- - (  a~ O ) O-7-7- 4aaa d2ce 1 (5) 
3 15• Ot Ot T' 

q =  

(this expression, as all those below, is Written to the accuracy of terms of the order of 
64 N (ma2/• inclusive; the same notation is used for the original quantities and their 
Fourier transforms). Taking as the mean temperature of the dispersed phase at a given point 
the result of averaging the value of T, the Fourier transform of which is given by Eq. (4), 
over the volumes of a sphere with center at the given point, we obtain 

OIO f 4~a a OT2 OT [ 4~d,,c~-- TrZdr = - - d o c ~  - -  = 4~a2~ . . . .  q, 
" 3 " " Ot Or r=a 

whence  w i t h  c o n s i d e r a t i o n  o f  Eq.  ( 5 )  we o b t a i n  

a z 0 ) T,. (6) 
T 2 =  1 15• Ot 

The obvious thermal balance equation for the continuous phase can be written in the 
form 

sdlc1(--~ q- uv ) T1 

whence with consideration of Eq. (5) it follows that 

3(I-- ~) 
= L , A T ~ - - n q ,  n-- 

4aa 3 

O2T1 
de OT~ q- 8dloluvT 1 : L ,AT 1 q- m - -  

Ot " 012 ' (7) 

m = (1 - -  s) d.,c~ (a2/15• 

while the heat capacity dc per unit volume of the heterogeneous dispersed medium is defined 
by Eq. (2). It will be convenient to rewrite Eq. (7) in the form 

0T 1 ~- wv7"l = ?ZkT1 q-~ c?ZT 1 
at a/2 

( 8 )  

edlc, u, ? z_  ~* , ~= (1--e)&co.. a a 
dc dc dc 15~  

wherew, y2, and ~ play the role of the effective rates of convective heat transport, the 
thermal diffusivity coefficient, and the temperature relaxation time for low-frequency pro- 
cesses, respectively. 

In form Eq. (7) coincides precisely with the equivalent Eq. (2), but it is important 
to find the relationship between the corresponding values of the coefficient m. For this 
purpose we write the interphase heat flux per unit volume in the form 
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l~q ---- ~;,, (T 1 - -  T:~)== p, "a ~ O T1 =; (1 - - -  e~ d.,c., 1 o ~ 0 / T  I 
t 5z  c?i ' - "  ,, 15z 0t / 

[where we consider Eqs. (5), (6)]. Hence it follows that $, is the operator 

~:~. 1 5 ( 1 - - - ~ )  ~. ( 1 a z d ) 
=~ a a 15• 8t ( 9 )  

but with the heat-exchange coefficient by no means constant, as was assumed in formulating 
Eq. (I). In a coarser approximation, neglecting terms of order 64 ~ (me2~• 2, the derivative 
in Eq. (9) can be dropped, thus identifying the coefficient $ in Eq. (i) with 15(1 - s)I/a 2 
Then the parameter m introduced in equivalent Eq. (2) is exactly equal to m from Eq. (7), 
i.e., Eqs. (2) and (7) coincide completely. However, the theory leads just to Eq. (7), not 
at all to the phenomenological system (i). Therefore, the fact that use of the indicated 
system leads to good results in practical calculations in the case where the time scale of 
the process is sufficiently long is the result of a circumstance which is to a significant 
degree accidental. In fact this system was obtained with a much more coarse assumption 
than Eq. (7). However, it proves to be the case that, as was proved in [17], to the accur- 
acy of terms of the order of 64 its solution coincides decisively with the solution of the 
equivalent equation for the corresponding problem of initial and boundary conditions. Thus, 
the equivalent equation in the form of Eq. (2), (7), or (8) proves to be physically more cor- 
rect than the semiempirical system (i). 

Equation (8) is of the elliptical type, and there is no difference in principle between 
the temporal and spatial independent variales appearing therein. As is well known, boundary 
conditions for correct formulation of various boundary problems on the basis of this equa- 
tion must be specified over the entire boundary of the integration region. For the Dirichlet 
and Neiman problems this means that one must specify values of T I or its normal deriv- 
atives on all portions of the surface limited by the spatial region of defintion of the 
equation, together with T I or its time derivative at the initial and final moments. The 
third and mixed boundary problems must be formulated similarly. After definition of T I the 
temperture T 2 is found by simple differentiation from Eq. (6). 

According to [21-23], for sufficiently high Fourier numbers (sufficiently low frequency) 
the solutions of Eq. (8) correspond well to experiment as, incidentally, do the solutions 
of other proposed equations, including the conventional parabolic one. However, on the 
whole, the available experimental data is insufficient to indicate the boundaries of appli- 
cability of this theory in the range of small Fourier numbers where this theory (because of 
the use of the low-frequency approximation) can be considered only as very approximate. 
Nevertheless, wehave sufficient experimental confirmation of the adequacy of the theory de- 
veloped from analysis of the processes of heating and cooling of mineral masses and fissured 
plates with a fluid flux passing through them. Without going into details, we will note 
that for analysis of processes of this type Eq. (8) with ~ = 0 was proposed previously by 
Smirnova [25], who compared its solution with a generalized complex of experimental data 
and found good agreement of the theory with these data. 

4. We will now consider the high-frequency asymptote of Eq. (3), corresponding to the 
inequality ~ = m'a >> i. Such a situation is completely realistic in cases where penetration 
of heat or the impurity into the particles of the dispersed phase is difficult (the value of 

is small). We have 

A ~ e x p [ - - ~ o ' ( a - - r ) ] ,  ~ - - m ' ( a - - r )  

a n d  f u r t h e r ,  i n  p l a c e  o f  Eq .  ( 4 )  

T == T.  (a/r) exp [ - - (o '  (a - -  r)l cos hot - -  ~,/(a -- r)], 

while for the heat flux into the particle we obtain (ma2/~ >> i) 

( i 0 )  

q = 2~ g-~a"=d,~c,,To ] / ~ ( c o s  o)t -- sin o)l). 

As before, considering this as an expression for the Fourier harmonic of the flux q, 
dependent on time in an arbitrary manner, and integrating over all frequencies, we find 
(see the analogous transformations in deriving the expression for the Basse viscous force 
in [27, p. 131) that 
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t 

o ~ i" OT~ dF 

As a r e s u l t ,  i n  p l a c e  o f  Eq. (6 )  we o b t a i n  
# l 

OT, 3 . ~ I" OT, I dF 

and in  p l a c e  o f  Eq. (7 )  o r  ( 8 ) ,  t h e  i n t e g r o d i f f e r e n t i a l  e q u a t i o n  

OT, 1 - OTI dr' 
ot + u .r, ,. - -  - W -  Y t  t' 

( 7  2 _ 

(il) 

(12) 

(13) 

where o 2 and e have the sense of effective thermal diffusivity and a new relaxation time, 
appearing in high-frequency transport processes, with respect to which the heterogeneous 
medium behaves like a material with memory; the possibility of such behavior was indicated 
in [28]. 

In real transport processes, accompanied by establishment of an equilibrium or steady 
state, the characteristic time scale usually increases monotonically, i.e., some continuous 
transition from the high-frequency asymptote described by Eqs. (12) and (13) to the low- 
frequency one of Eqs. (6) and (8) is accomplished. It can easily be seen that as the pro- 
cess develops the effect of thermal memory degenerates, while the intensity of both compo- 
nents of the thermal flux in the medium (the convective and the effective dispersion) de- 
creases. In fact, u >w and 02 > y2. We recall that for adequacy of hf approximation being 
used it is necessary that a << L; depending on which transport component predominates, for 
the linear temperature scale we have L ~ u/~ or L ~ (o2/m) I/2. 

All the results obtained are valid to an equal degree for description of convective- 
diffuse mass transport processes if we take dlc I = d2c 2 = 1 and understand by • and I, the 
diffusion coefficient into particles and the effective impurity dispersion coefficient (also 
including molecular diffusion) in the continuous phase, respectively. An example of such 
a process would be moisture transport in the form of water vapor in nodular soil. 

5. As an illustrative example we may consider heating of a layer of granular material 
with spaces filled by an immobile gas or liquid by a solid wall bordering the layer. We will 
assume the initial (at t = 0) temperatures of both phases of the layer equal to zero; for t > 
0 the wall temperature is constant and equal to T ~ . We will consider the one-dimensional 
problem where T1 and T 2 depend solely on the coordinate x normal to the wall with boundary 
conditions of the first sort at x = 0. 

It is clear that the time scale of the process is of the order of magnitude of t, i.e., 
it changes with time from zero to infinity, the latter corresponding to establishment of a 
steady state for any finite region of space. The process is characterized by two relaxation 
times: 0 ~ (a2/x)(dlcl/d2c2) 2 and �9 ~ 0.i a2/• [see Eqs. (8) and (13)]. If there is a drop- 
let liquid within the layer then �9 is approximately an order of magnitude less than e; if the 
layer is filled by gas then T is several (four or more) orders of magnitude greater than e. 
In the initial heating stage (t ~ T) one must use Eqs. (12) and (13), while in the final stage 
(t >> T), Eqs. (6) and (8) are applicable. 

Applying a Laplace transform to Eq. (13) and using the convolution theorem, for the 
image of the temperature T I (to avoid confusion the image is denoted by an asterisk super- 
script) we obtain the problem 

dx~ = ~ P + r ~ , r ~ i , = o - -  p , T ~ l ~ - ~ O ,  

the solution of which is: 

-- exp -- T~---- P p-~- , 
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while it follows from Eq. (12) that 

Hence we o b t a i n  the  image of  the  thermal  f l u x  from the  wa l l  to  the  l a y e r  

Q* =--~* dx I~=o ~P P + 

Definition of the original quantities then reduces to computation of complex integrals. 
We will limit ourselves here to obtaining the simplest possible asymptotes. If t << 0, then 
it is admissable to take 0p >> 1 and use the corresponding series expansions of the images 
presented above. As a result, for small times we obtain the flux 

and main terms of the temperature expressions 

( ' )  T ~ T  ~ 2~-I/i- ' 

3 t /~ -  To[ 2 / x ~ ) x 
a ~ -  exp ( 4ozt o 

, t ~ O, (14) 

(Zs) 

If the layer is gas-filled, we have times satisfying the inequality 0 << t ~ z. In this 
case we must again use Eqs. (12) and (13), taking 0p << I. In particular, for the thermal 
flux to the layer we have the expression 

Q,~ 
a -~- F (3/4) 

where F(z)  i s  an Euler  gamma-function.  

+ ,21~ (1/4) , 0 << l < v ,  (16) 

For t >> T, i.e., in the final stage of the heating process, in place of Eqs. (12) and 
(13) we must use Eqs. (6) and (8). For simplicity, completely neglecting quantities of the 
order of ~/t, we obtain expressions corresponding to a one-temperature model of the layer 
(and a parabolic thermal conductivity equation): 

Q~TO%, ( x )  Y ~ ' ,  T I ~  T ~  T~ - -  , t  ~ .  (17) 
2y ~ 7  

Thus, heating of a gas-filled granular layer occurs in three clearly distinguishable 
stages. In the first [Eqs. (14) and (15)] the layer heats up almost as through it were a 
homogeneous medium with effective heat capacity gdlc I per unit volume, of the same order of 
magnitude as the specific heat of the gas. In the second stage [Eq. (16)] the heat drain to 
the particles becomes significant; the decrease with time of the heat flux to the layer 
slows, Q ~ t -I/4. Finally, in the third stage [Eq. (17)] thermal equilibrium between the 
layer phases is practically achieved, the layer againheating up like a homogeneous medium. 
However, the heat capacity of this medium proves to be equal to the mean heat capacity of 
the layer itself. If the layer is filled by a droplet liquid then the second stage of the 
heating process is not realized and there is a continuous transition from the first stage 
to the third. Roughly speaking, in this case the filled layer heats up like a homogeneous 
medium, the thermal capacity per unit volume of which increases monotonically from ~dlcz to 
dc with increase in t from zero to infinity. Physically, the disappearance of the second 
stage is related simply to the fact that in this case the Particles heat through quite 
rapidly. 

Reliable acquisition of experimental data for times t << 9 after commencement of heating 
of a gas-filled layer is complicated by limited experimental capabilities. From the physical 
viewpoint there is no doubt whatsoever that at initial times only the gas adjacent to the 
wall must be heated, as follows from Eq. (14). Over a quite wide time interval, correspond- 
ing to the second stage of heating, very much experimental data has been acquired, which are 
evaluated in [22, 23]. All these data indicate a significant reduction in the rate of de- 
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crease of flux in this interval. Thus, for example, in [23] Fig. 3 shows data according 
to which for an increase in Fourier number Fo ~ Kt/a 2 by three orders of magnitude from 
i0 -~ to 1 the Nusselt number, which is proportional to the thermal flux from the wall, 
decreases by approximately five times. According to the function Q ~ t -I/" reflected by 
Eq. (16), it should decrease by 5.6 times. On the whole this dependence has been found to 
be in satisfactory agreement with other experimental facts. In the final stage of the heat- 
ing process the experimental data are described well by Eq. (17). The disappearance of the 
second heating stage when the granular layer is filled by droplet liquids has also been con- 
firmed experimentally. 

The results obtained for heating of a layer by a solid wall must of Course be considered 
qualitative. They clarify the physical mechanisms of the heat transfer process, but do not 
conflict with Other approaches to the problem. In particular, their derivation has complete- 
ly neglected the thin interlayer with increased porosity near the wall, for consideration of 
which it would apparently be necessary to use boundary conditions not of the first, but 
rather the third sort [29, 30]. Moreover, in the initial moments of heating the inequality 
a << L is obviously disrupted, satisfaction of which is necessary for applicability to the 
problem under consideration of the continuum methods applied herein. Temperature inhomogene- 
ity along the particle surface mainly affects the values of the effective heat liberation 
coefficient ~, of the dispersed system, which quantity experiences frequency dispersion [6, 
20]. Therefore, to obtain the corresponding correction in the first approximation we may in- 
troduce some mean (over time) quantity k,' differing from A,, which is to be treated as 
some empirical parameter. This quantity characterizes effective conductivity of the granular 
layer in its initial heating stage. 

In conclusion, we will note that equations analogous to those above have been obtained 
for description of problems of great practical import in processes of filling of a fissured- 
porous medium by a fluid, establishment of a steady-state filtration flow, etc. Due to 
lack of space these equations cannot be presented here. However, we will note that the 
data of such processes are also complicated by relaxation phenomena, while for marked non- 
steady-state conditions fissured-porous media must also be considered as materials with 
memory. 

NOTATION 

o, particle size; cl, c~, dl, d2, specific heat capacities and densities of materials 
forming continuous and dispersed phases; L, linear scale of mean fields; ~, linear scale of 
interparticle space; m, coefficient appearing in Eqs. (2) and (7); n, numerical particle 
concentration; p, Laplace transform variable; Q, thermal flux from wall to granular layer; 
q, thermal flux to particle; r, radial coordinate; T, temperature within particle; TI, T2, 
mean temperatures of continuous and dispersed phases; T ~ , wall temperature; t, time; u, 
mean velocity of continuous phase in spaces between particles; w, effective velocity intro- 
duced into Eq. (8); x, coordinate normal to wall; $, interphase heat-exchange coefficient; 
y2, 02, effective thermal conductivity coefficients defined in Eq. (8) and (13); 6 - w'a; 
E, porosity (volume fraction of continuous phase in heterogeneous medium); ~, • thermal 
diffusivity coefficients of particle and continuous phase materials; ~, ~,, thermal conduc- 
tivity coefficients of particles and medium as a whole; T, @, time scales introduced in Eqs. 
(8) and (13); m, frequency; ~' - Jw/2~; asterisk superscript denotes Laplace transform. 
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